Performance measures for object detection evaluation

نویسندگان

  • Bahadir Özdemir
  • Selim Aksoy
  • Sandra Eckert
  • Martino Pesaresi
  • Daniele Ehrlich
چکیده

0167-8655/$ see front matter 2009 Elsevier B.V. A doi:10.1016/j.patrec.2009.10.016 * Corresponding author. Tel.: +90 312 2903405; fax E-mail addresses: [email protected] (B. edu.tr (S. Aksoy), [email protected] (S. Eckert), Pesaresi), [email protected] (D. Ehrlich). We propose a new procedure for quantitative evaluation of object detection algorithms. The procedure consists of a matching stage for finding correspondences between reference and output objects, an accuracy score that is sensitive to object shapes as well as boundary and fragmentation errors, and a ranking step for final ordering of the algorithms using multiple performance indicators. The procedure is illustrated on a building detection task where the resulting rankings are consistent with the visual inspection of the detection maps. 2009 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quality , quantity and generality in the evaluation of object detection algorithms

Evaluation of object detection algorithms is a non-trivial task: a detection result is usually evaluated by comparing the bounding box of the detected object with the bounding box of the ground truth object. The commonly used precision and recall measures are computed from the overlap area of these two rectangles. However, these measures have several drawbacks: they don’t give intuitive informa...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Performance Evaluation of Object Detection and Tracking in Video

The need for empirical evaluation metrics and algorithms is well acknowledged in the field of computer vision. The process leads to precise insights to understanding current technological capabilities and also helps in measuring progress. Hence designing good and meaningful performance measures is very critical. In this paper, we propose two comprehensive measures, one each for detection and tr...

متن کامل

Modeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism

In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...

متن کامل

Modeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism

In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...

متن کامل

Low Cost UAV-based Remote Sensing for Autonomous Wildlife Monitoring

In recent years, developments in unmanned aerial vehicles, lightweight on-board computers, and low-cost thermal imaging sensors offer a new opportunity for wildlife monitoring. In contrast with traditional methods now surveying endangered species to obtain population and location has become more cost-effective and least time-consuming. In this paper, a low-cost UAV-based remote sensing platform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2010